martes, 24 de octubre de 2017

Distribuciones discretas

Distribución binomial 

Es frecuente que en control de calidad se den variables del tipo “pasa, no pasa”. Por ejemplo, un artículo cumple con especificaciones o no, una pieza resiste cierta fuerza o no, una lámpara enciende o no. Un experimento aleatorio donde los posibles resultados de cada ensayo son: “éxito” o “fracaso” se conoce como experimento Bernoulli. Un experimento aleatorio que consiste en una secuencia de n ensayos Bernoulli donde además se cumple que: 1. Los ensayos son independientes. 2.  La probabilidad de éxito en cada ensayo, denotada por p, permanece constante.

Distribución geométrica 

Proporciona la probabilidad de requerir X repeticiones independientes de un experimento Bernoulli para observar el primer éxito.

Distribución hipergeométrica

Se aplica en ciertos tipos de experimentos Bernoulli, en los cuales la probabilidad de éxito no se mantiene constante, y eso ocurre cuando el tamaño de lote es pequeño con respecto al tamaño de la muestra. Por ejemplo, un conjunto de N objetos contiene: K de ellos clasificados como éxitos y N − K como fracasos. Se extrae una muestra aleatoria (sin reemplazo) de tamaño n de tal conjunto, n ≤ N. Sea X el número de éxitos en la muestra, entonces X tiene una distribución hipergeométrica.

Distribución de Poisson

Una situación frecuente en control de calidad es evaluar variables como las siguientes: número de defectos por artículo, número de defectos por metro cuadrado de tela, número de defectos por unidad de área, número de impurezas en un líquido, número de errores de un trabajador. Todos los casos anteriores se resumen así: número de eventos que ocurren por unidad (por unidad de área, por unidad de volumen, por unidad de tiempo, etc.). Asimismo, es frecuente que este tipo de variables tenga una distribución de Poisson

Práctica para I examen

Realizar como práctica de examen (no obligatorio, no tiene puntaje)


Tipos de histogramas


Medidas de tendencia central

Con las mediciones de una característica de calidad como las del ejemplo 2.1, el primer aspecto a investigar consiste en conocer la tendencia central de los datos, es decir, identificar un valor en torno al cual los datos tienden a aglomerarse o concentrarse. Esto permitirá saber si el proceso está centrado; es decir, si la tendencia central de la variable de salida es igual o está muy próxima a un valor nominal deseado (en el ejemplo el valor nominal es 1.20). A continuación veremos tres medidas de la tendencia central: la media, la mediana y la moda.

Media muestral 

Supongamos que x1, x2, x3,..., xn son las observaciones numéricas de una muestra; entonces, la medida más usual de su tendencia central es proporcionada por la media (o promedio) muestral.

Media poblacional o del proceso

μ Si para calcular la media se utilizan todos los elementos de la población (todos los posibles individuos, especímenes, objetos o medidas de interés sobre los que se hace un estudio), por ejemplo, el grosor de todos los discos producidos en la última semana o mes, entonces el promedio calculado es la media del proceso (o media poblacional) y se denota con la letra griega μ (mu).

Moda

Otra forma de medir la tendencia central de un conjunto de datos es mediante la moda, que es igual al dato que se repite más veces. Si varios datos tienen la frecuencia más grande, entonces cada uno de ellos es una moda, y se dice que el conjunto de datos es multimodal.

Desviación estándar poblacional o del proceso, 

σ Si para calcular la desviación estándar se emplean todos los elementos de la población o proceso, entonces se obtiene la desviación estándar poblacional y se denota con la letra griega sigma ( σ ). Como se comentó antes, es posible considerar a la población como las mediciones de toda la producción de las últimas semanas, o si las mediciones se toman por muestras, entonces una buena idea es obtener los parámetros poblacionales ( μ y σ ) con todas las mediciones realizadas en las últimas semanas, siempre y cuando éstas no sean pocas; de 120 a 150 mediciones en adelante es una buena cantidad.

Por otra parte, el cuadrado de la desviación estándar, S2, conocido como varianza muestral, es muy importante para propósitos de inferencia estadística. Y en forma equivalente σ2 es la varianza (o variancia) poblacional. Otra medida de dispersión es el rango o recorrido, R, que es igual a la diferencia entre el dato mayor y el dato menor de un conjunto de datos.